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The general gradient theory of fluid microstructures is outlined. This theory 
reduces the determination of fluid microstructures to a boundary value problem. 
The density and pressure tensor profiles and the tension of planar thin films and 
layered structures in one-component fluids are investigated. The boundary 
conditions determining these structures are given a geometric interpretation in 
the free energy-density diagram. Discussed are the implications of the theory 
for the validity of Antonov's rule, the duplex film hypothesis, and the asymp- 
totic theory of disjoining pressure and of the origin of a characteristic length 
scale in spinodal decomposition. 
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1. I N T R O D U C T I O N  

In ter fac ia l  p h e n o m e n a  are involved in an  impor t an t  way  in many  commer -  
cial processes and  produc ts  as well as in b iological  mechan i sms  and  ~ 
materials .  Assoc ia ted  with and  perhaps  even de t e rminan t  of in terfacia l  
proper t ies  are what  we call  f luid microst ructures .  A fluid micros t ruc ture  is a 
region in a f luid in which densit ies  a n d / o r  compos i t ions  vary  apprec iab ly  
over  dis tances  of the o rder  of magn i tude  of the range  of molecu la r  forces. 
Examples  of f luid micros t ruc tures  inc lude  f l u id - f l u id  interfaces,  f l u id - so l i d  
interfaces,  mul t iphase  con tac t  regions, thin films, drops  and  bubbles ,  mi-  
celles, mic roemuls ions ,  l iquid  crystals ,  l ip id  bi layers ,  vesicles, foams,  
sp inoda l ly  deve loping  densi ty  var iat ions,  and  gels. 
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Fluid microstructures are ubiquitous in the products and uses of 
products of the emollient, detergent, coating, and processed foods indus- 
tries. Foams, bubbles, drops, films (membranes), gels, and microporous 
solids are frequently involved in separation and reaction processes of the 
chemical industry as well as pollution control and water treatment industry, 
and the natural processes of biological systems. Capillarity, wettability, and 
multiphase flow in porous media are controlled to a great extent by fluid 
microstructures--multiphase flow phenomena in porous media are involved 
in natural and induced ground water movement, solution mineral leaching, 
petroleum recovery processes, and wood fiber treatment and manufacturing 
processes. Emulsion polymerization is a well-established industrial process 
now. Micellar or microemnlsion reaction processes are under investigation 
for their ultimate practical utility. And liquid crystals are commonplace as 
watch dials and thermometers. The importance of bilayers in cellular 
structure and the organizational and transport processes of living matter is 
thoroughly established, although incompletely understood. Vesicles are 
under active investigation as potential vessels for drug delivery to specific 
sites in living organisms. The foods industry is also researching vesicle 
behavior for future applications. 

The list of processes and systems in which fluid microstructures are 
consequential goes on and on and will not be produced here. What is 
relevant to this paper is the fact that in spite of the wide involvement of 
fluid microstructures in technological and natural processes and products 
and even though interfacial science is a classical subject, the fundamental 
basis for understanding the behavior of fluid microstructures still forms an 
exciting and developing subject. Among the objects of current theoretical 
interest are the local density and stress (pressure) distributions associated 
with the fluid microstructures; interracial tension and other stress mo- 
ments; contact angle of three-phase contact lines; film tensions, stability, 
and disjoining pressure; and contact angle and meniscus shape. 

In this paper the density and stress profiles of several microstructures 
are explored with the gradient theory of inhomogeneous fluids. Gradient 
theory, initiated long ago by Rayleigh (l) and van der Waals 2 and more 
recently exploited by Cahn and Hilliard (3) and many others, 3 is strictly 
speaking expected to be valid only if the scale of density variations is large 
compared to the range of molecular forces. However, numerous theoreti- 
cal (4-6) and semiempirical (7) calculations of the tension and density pro- 
files of planar interfaces indicate that the gradient theory is a good 
approximation even when the scale of the density variation is only a few 

2 For a complete treatment of the van der Waals theory of interfaces see Ref. 2. 
3 For a bibliography of several of these see the literature citations of Ref. 3. 
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multiples of the range of molecular forces. Because of this fact and the 
relative simplicity of the gradient theory, we use it in the present paper to 
describe the microscopic and thermodynamic properties of planar thin 
films and layered (periodic) microstructures. The gradient theory of spheri- 
cal microstructures will be investigated in a forthcoming publication. ~s) 

Although the general theory is outlined in the next section for multi- 
component fluids, the computations presented in later sections are re- 
stricted to one-component fluids. Moreover, for computational simplicity 
many of the numerical results are given for the van der Waals fluid. 
However, to demonstrate that the results are qualitatively meaningful for 
real fluids, several computations are performed on the 6-12 Lennard-Jones 
fluid. 

2. THE GRADIENT THEORY 

The Helmholtz free energy F((n)) of an inhomogeneous fluid is a 
functional of the density distributions n(r)------(nl(r ) . . . . .  n,(r)), where n,(r) 
is the density of species a at position r. In the absence of external fields 
F((n)) can be expressed in the form 

F({n)) =ff(r; {n})d3r (2.1) 

where f(r; (n)) is the Helmholtz free energy density of the fluid at position 
r. In the gradient theory, one assumes that the free energy density at r is a 
function of n and all gradients 7n, 7~7n . . . . .  at r. Then, expanding f 
about the homogeneous state (7n = 77n  . . . . .  0) and retaining terms 
through third order in gradient, one obtains ~3) 

f ( r ;{n})=/0(r )  + ~ ~A,  V 2 n , + l  ~ ~B~eVn .Vn  ~ 1  (2.2) 
a = l  a , /3= 1 

where f0(n) is the Helmholtz free energy density of homogeneous fluid at 
composition n, and A~ and B~ are quantities involving correlation func- 
tions of homogeneous fluid. Insertion of Eq. (2.2) into Eq. (2.1) and 
rearrangement leads to 

;[ 1 f = f0(n) + -~c~B Vn~ .Vn• d3r (2.3) 
a,fl= 1 

where c,~ B = B~ - ~A,~/ant~. As we shall not use A~ and B~B, we shall not 
present formulas for them here. The influence parameter c~ is proportional 
to the square of a characteristic interparticle correlation length. In particu- 
lar,(s-s) 

co~ (.) = kkrfs2Cg~(S; .) d3~ (2.4) 
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where C~(s; n) is the direct correlation function of homogeneous fluid of 
composition n. Here T is absolute temperature and k is Boltzmann's 
constant. 

An alternative formula for G/~ has been derived from the gradient 
theory of the Yvon-Born-Green equations for an inhomogeneous fluid: t9) 

lu~ '~+ 1-~ ( 3u~' 3u& G~ = ~ n~ + (2.5) 

where 

js T gg'(s; n) d3s (2.6) 

u~a(s) is the pair potential of species a and t ,  and g"~(s; n) is the pair 
correlation function of species a and fi for homogeneous fluid at composi- 
tion n. Unlike Eq. (2.4), Eq. (2.5) is restricted to fluids whose particles 
interact with pairwise-additive, central forces and is based on a special 
approximation for the pair correlation function of inhomogeneous fluid, 
namely, 

g "  (r, r') = g~B(Ir - r'l; n( r + r' 

Although Eq. (2.5) is based on this inexact correlation function, we have 
found (1~ that predictions of density profiles and surface tensions of the 
6-12 Lennard-Jones model using Eq. (2.5) agree quite well (say 10% 
discrepancies) with those obtained using Eq. (2.4). The reason appears to be 
that Gr of Eq. (2.4) and u~ B are weak functions of density. In the dilute gas 
limit Eqs. (2.4) and (2.5) are identical. 

An advantage of introducing the approximate pair correlation function 
(2.7) and focusing on two-body central forces is that the gradient theoreti- 
cal pressure tensor P can be obtained directly from the Bearman- 
Kirkwood theory. (11) Through third order in gradients, the pressure tensor 
corresponding to Eq. (2.7) is (9) 

a ,B= 1 

1 (n B Vn~ + n~ Vn~) Vu~  + 3  

+ In B V~7 n= -(Vn,)(Vn/~) + n, VVn~] } (2.8) 

where P0(n) is the pressure of homogeneous fluid at composition n, 

Po(n)= ~ n~kT= ~ 1 f du~ g~B(s;n) d3s (2.9) ~=~ ~,~=~ ~ s--~-- 
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and [ ]  is a fourth-rank tensor of the form 
3 

[ ]  ~-- [[ -[- E (eiejejei "[- eiejeiej) (2.10) 
i,j= 1 

ei is the ith unit vector of a Cartesian basis set, and I is the unit tensor. 
The rigorous gradient theory of the pair correlation function has been 

worked out, (12) so that in principle the rigorous gradient formula for P can 
be used instead of Eq. (2.8). However, the result is a complicated expression 
involving second-, third-, and fourth-order direct correlation functions, 
which are not available for computation. 

For a closed isothermal system, equilibrium microstructures are those 
that minimize the Helmholtz free energy. The density distributions for 
which Eq. (2.3) is an extremum can be shown by standard calculus of 
variations to obey the set of equations (3) 

1 @ aq, fi aco V'(coBV B)- 5 z. -aTv ,'v B - (2.11) 
fl= 1 "/,fl= 1 0ha 

a = 1 . . . . .  ~, where r is a thermodynamic potential defined by 

co(n) = f0(n) - N n~#~ (2.12) 
r 

#~ is the chemical potential of species a. 
With Eq. (2.11) the determination of a given fluid microsctructure 

becomes the task of solving a nonlinear boundary value problem. The 
existence of a microstructure is largely governed by the thermodynamic 
potential co (and therefore the Helmholtz free energy density f0 of homoge- 
neous fluid) and the characteristic length scales are controlled primarily by 
the influence parameters. Whether a given microstructure determined by 
the extremal equations (2.11) is locally stable depends on whether the 
density distriubutions minimize the free energy. Stability depends signifi- 
cantly on f0 and c~r 

In the case of a planar system, n~ = n~(x), Eq. (2.11) can be multiplied 
by dnJdx, summed, and integrated to yield 

~ gc~/3 dn~ dn~dx - c0(n) + K (2.13) 
a,fl 

where K is a constant of integration. Let us define the tension y of the 
planar system by 

Y = ( OF (2.14) 

A is the area of the system in the plane normal to the x direction, V is the 
volume, and N ~ (N 1 . . . . .  N,), with N~ = fn~d3r. Combining Eqs. (2.3) 
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and (2.13), we obtain 

= f cln  -d-s dx (2.15) 

From Eq. (2.8) we obtain for a planar system an interesting relation- 
ship between the normal pressure component PN =- Pxx and the transverse 
pressure component Pr------ Pzz = Pyy, namely, (9) 

PT ----- ~P0(n) + �89 (2.16) 

In the absence of an external field PN is constant for a planar system. Thus, 
according to Eq. (2.16) the variation of the transverse component of 
pressure with density variation of the microstructure is governed by the 
equation of state of homogeneous fluid. 

In the great majority of microstructured fluids there are ions present, 
and related double layer phenomena. Electrostatic fields and conservative 
external fields can be included in the gradient theory by expressing the 
Helmholtz free energy in the form (~3) 

F( {n} ) = f [ f~ + ,,B~'12 c~ Vn~ . Vn~+ ~] n~Ue~ (r) + ~  -~-~eE2j d3r 

(2.17) 

where u e is the potential of any nonelectrostatic external forces present, E 
is the electric field, and e is the dielectric constant. We assume e is a known 
function of n. The electric field at r is the negative of the gradient of the 
voltage ~(r) (i.e., E = -7q~), which obeys the Poisson equation 

7 . ( ,  7~)  = -4rr~z,~en,~ (2.18) 

e is the unit electronic charge and z~ is the valence of species a. The 
extremal equations obeyed by equilibrium microstructures are 

1 + ~cvt~ 
V (cab Vn~) ~ ~.a "dn,~ �9 - =---- Vn v �9 Vn~ 

B = 1 ~'~ = ~ (2. t 9) 
_ ~r + u ~  1 Oe E 2+z ,~e~  

On,~ 8~r On,~ 

The quantity -(1/8~r)(Oe/~n,OE 2 represents the contribution of electro- 
striction to the chemical potential. It is usually ignored in double layer 
theories because it is small except at very high electric fields. Sufficiently 
near a critical point this contribution could be appreciable compared to 
3~o/3n,~ and therefore play an important role in near-critical microstruc- 
tures. 
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3. THIN FILMS 

We consider here planar thin films of one-component fluids. For 
purposes of discussion thin films can be conveniently divided into two 
classes: (1) thin phases, i.e., films that are thick enough to behave as a bulk 
phase with two interfaces characterized by bulk phase tensions, and (2) thin 
films, whose tension depends on film thickness. We shall investigate class 2 
films to determine (a) the thermodynamic conditions under which such 
films are solutions of the extremal equation, (b) what controls film density 
and stress profiles and tension, (c) how thick a film must be to behave as a 
thin phase, and (d) whether thin films are local minima of the free energy. 

The boundary conditions defining a one-component thin film are that 
the density be maximum (liquid-like film) or minimum (gas-like film) at the 
center and that n tend to a bulk value n B as x ~ _ or i .e., 

dn x=o=0,  n--~n B asx - - -~+~  (3.1) 

Referring back to the one-component, planar versions of Eqs. (2.11) and 
(2.13), we find that these conditions require 

+ K = + K = o 

o r  

and 

o r  

- K =   (no) = 

OnO--~-~ ~=~=  0 

(3.2) 

and integrating 

an (3.5) x = .'no Vn(x)( - ~ ),/2 [w(n) _ o~(nR)]1/2 

t~ = tt0(nB) (3.3) 

n o [ -  n ( x  = 0)] is the density at the film center. If at a given temperature 
T, the bulk density n B is set, then Eqs, (3.2) and (3.3) determine the 
chemical potential/~ and the density n o. More generally, setting values for 
any two of the quantities T, nB, no, and / t  fixes the state of a thin film. 

The density profile of the film can be obtained by solving Eq. (2.16) 
for dx, 

d x = ( ~ ) ' / 2  dn (3.4) 
- ' / 2  
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The film tension can be computed from any of the following formulas: 

= c( dn)  2 
7 3 - ~  ~ d x  dx 

= 2 ~ [ o ~ 2 ~ ] ( 2 c [ o ~ ( n ) - ~ o ( n e ) ] } ' / 2 d n  (3.6) 

For a planar interface to be stable the quantity c must be a positive 
function of density. Calculations with the 6-12 Lennard-Jones potential 
yield a positive c that is a weak function of density (and temperature). 
Since c is positive, thin films can occur only if * f i n ) -  ~0(nB)> 0 for 
min[n0,nB] < n < max[n0,ns]. Otherwise, the rhs of Eq. (3.4) would be 
imaginary, a physically impossible result. Whether this positivity condition 
on &0(n) = ~o(n) - ~0(nB) can be met depends on the Helmholtz free energy 
density of homogeneous fluid. Qualitative plots of fo(n) versus density are 
presented in Fig. 1 for the cases T > T C and T < T~. From the plots 2x0~(n) 
in the figure, we see that the following geometric construction determines 
the existence of a thin film corresponding to bulk density ns: 

(a) The chemical potential/~ is the tangent of fo(n) at n 8. 
(b) Draw a line tangent to and touching fo(n) and n B. The ordinate of 

this line is n/z + r 
(c) Ao~(n) is the vertical distance from the line to the curve fo(n). 
(d) If the line intersects fo(n) at some n o and if A~0(n) is positive 

between n B and n 0, then a thin film exists with centerline density n o and 
bulk density n B. 

For temperatures above Tc there exists no n~ such that the tangent 
n/~ + ~0(nB) intersects the curve fo(n). Thus, no thin films exist at supercriti- 
cal temperatures. On the other hand, for T < T~, there are infinitely many 
thin films, corresponding to two ranges of nB. As illustrated in Fig. 2, there 
is a range of bulk densities for which liquid'-like thin films occur (this is 
ng< n 8 <ngs), and there is a range of bulk densities for which gas-like thin 
films occur (this is nt, < n B < nt). Here ng and n l are densities of the bulk 
vapor and liquid phases in thermodynamic equilibrium. For values of n B 
less than ng and greater than hi, no thin film occurs. The density ng s locates 
the gas side of the spinodal curve and nts locates the liquid side of the 
spinodal curve (generated by the equation 32fo/3n 2 = 0). That  there are no 
thin film states for n B in the range ng s < n B < nt~ is simply a reflection of 
the fact that homogeneous fluid is unstable in this density range. It is 
important to note, however, that some of the densities in the inhomoge- 
neous portion of the film can lie between ng~ and nls (similarly to liquid- 
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f o ( n )  

(a) T >T C 

251 

A~(n) = fo(n)-n/.~-(#(n B) 

/ / ~ A ~ ( n )  

n B 
n ~  

n/..t + ~ ( n e ) '  

I 
I 

n B no 
n .---4D 

(n) 

A~(n) 

n---~ 

Fig. 1. 

(b) T < T  c 
Free energy construction of the density in the center and in the bulk region of a 

symmetric thin film. 

vapor interfaces). Such density states are stabilized by the density gradients 
in the film or interfacial regions. 

To summarize: If T > T~, thin films do not occur. If T < T c, then 
families of thin films exist, the one being liquid-like and having bulk 
densities in the range n g <  n B < n g  s and the other being gas-like and having 
bulk densities in the range nls < n B < n z. The saturated liquid and vapor 
densities ng and n l and the liquid-side and vapor-side spinodal densities nts 
and nlg are determined by the temperature T. Once T is set, a particular 
thin film is fixed by setting nB, n o, or/z. 
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Fig. 2. 

I 
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NO IiThin ] NO 
thin Ifilms~ thin 
f i lms I t f i lms I 

ng ng s 

] fo  (n) 

,, 

Ilfitms I f i lms 

nls nl 

Ranges of bulk densities of thin films at a subcritical temperature. 

One can anticipate from Eqs. (3.5) and (3.6) and the geometrical 
constructions in Figs. 1 and 2 the qualitative behavior of thin films with T 
and n B. As T approaches To, f o ( n )  becomes flatter between ng and n t, so 
that A~(n) becomes smaller. Thus, for a given n s the film width tends to 
increase and the tension to decrease as T approaches To. And for a fixed T, 
as n B approaches ng s for a liquid-like film or nls for a gas-like film, Aw(n) 
decreases and the film tension decreases correspondingly. At a given T, as 
n B tends to ng (or nz), n o tends to n I (or ng), the film becomes infinitely wide, 
and the film tension approaches twice the surface tension of the saturated 
liquid-vapor interface. Thus, the liquid-vapor interface can be viewed as 
one of the interfaces of an infinitely thick film. 

To appreciate more quantitatively the dependence of thin films on n B 

(or on /~) and to answer the question of how thick a thin film must be 
before it begins to behave as a thin phase, we have carried out a number of 
computations for a van der Waals fluid and the 6-12 Lennard-Jones fluid. 
We discuss first a van der Waals fluid, whose Helmholtz free energy 
formula is 

f o ( n )  = n l ~ t ( T )  - n k T [ l n ( 1 / n  - b )  + 1] - n a  2 (3.7) 

u t ( T )  arises from the internal energy of the molecules--it  cancels out of all 
of our (isothermal) computations; a is an energy-related constant and b is a 
constant accounting for the excluded volume of fluid particles; bt0(n) is 
equal to the derivative of f o ( n )  with respect to n, and 

P o ( n )  = n k T / ( 1  - n b )  - na  2 (3.8) 
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Consistent with van der Waals' model we assume c is constant. Calcula- 
tions are carried out and the results reported in the dimensionless variables 

n* = n b ,  T* = b k T / a ,  P* = b2p /a ,  ~* = b2o~/a 

7* = b2vl(ac)  112, f*oo = b2fol a, It* = bit~a, x* = ( a l c ) l / 2 x  

(3.9) 

The quantity ( c l a )  1/2 has dimensions of length and is proportional to the 
range of intermolecular forces. In the reduced variables used here T * =  
0.296 at the critical point. 

Four examples of thin-film density profiles are presented in Fig. 3, two 
being films of greater density than bulk phase (liquid-like films) and two of 
density less than bulk phase (gas-like films). The reduced temperature is 
T * =  0.223 in all cases. At this temperature saturated liquid and vapor 
densities are 0.679 and 0.0600. The liquid-like film with n B = 0.06004, 
though still very thin on a macroscopic scale, has a liquid interior that is 
essentially saturated bulk liquid. To answer the question of when a thin 
film is thick enough to behave as a bulk phase with two interfaces, let us 
introduce for convenience the criteria that a thin film has become a thin 
layer of a phase when: (i) n o is within 1% of the  saturated bulk liquid (or 
vapor) value and (ii) the film tension is within 1% of twice the surface 
tension of the planar interface. With these criteria, we conclude from the 
entries in Table I that remarkably thin films behave as bulk phase. For the 
example given in Table I, a thin film behaves as bulk phase when its 

13" 

. sC_- 7F 
L ~ o';o.6o 

J " \  .6 i / ~ _  - . . . .  

/ ./--\ 
I ~ " " , .  i / "  i I \ / ',,,/\/ \ 

/ \ 
/ / " \ \e:o.o oo4 

/ J .~ ~ ",,. 

n* :O.08  
I I I I I I [ I I I I 

-12 -I0 -8 -6  -4  -2 2 4 6 8 I0 12 

X *  

Fig. 3. Density profiles of thin films of a van der Waals fluid at T* = 0.223. 



254 Davis and Scriven 

Table I. The Reduced 
Tension, and Chemical 

Center and Bulk Densities, Half-Width Film 
Potentials of Thin Films ot a van der Waals 
Fluid at T* = 0.223" 

n~ n~ Ax'~12 "/* Ix* 

0.32243 0.100 " 2.764 0.0181 - 0.6652 

0.42757 0.080 2.531 0,0506 - 0.6853 
0.50527 0.070 2.561 0.0819 - 0.7000 

0.55976 0.065 2.699 0.1049 - 0.7091 
0.62937 0.061 3.220 0.1307 - 0.7172 

0.64524 0.0605 3.501 0.1350 - 0.7183 

0.65974 0.0602 3.930 0.1379 - 0.7189 

0.667 0.0601 4.351 0.1389 - 0.7191 
0.67878 0.0600432 7.421 0.1397 - 0.7193 

0.679 0.0600 + oo 0.142 - 0.7194 

0.158747 0.67 2.681 0.1052 - 0.72932 

a The  d a t u m  of the chemica l  po ten t ia l  is IX+ (T).  

half-width mXll2, defined by the expression 

l fmax[n~,(n[~+nl])/2] d n *  ] 1 / 2  ( 3 . 1 0 )  

AXr/2 = 2 "Jmin[no,(ni~ +n~)/2] ICO*(n*)  - -  t o * ( n ~ )  

is about four times the quantity (c /a)  1/2, or roughly four times the range of 
molecular interactions. Actually, the important length scale is the thickness 
of the planar liquid-vapor interface. If the half-width of the film is a couple 
of multiples of this width, the film behaves essentially as a thin layer of a 
bulk phase. 

We also examined thin films for the 6-12 Lennard-Jones model, i.e., 
for a fluid whose particles interact with the pair potential 

u(s) = 4e[ (o / s )  12'- (o / s )  6] (3.11) 

The Weeks-Chandler-Andersen theory (14~ was used to compute fo(n) and 
the pair correlation function of a homogeneous fluid. Equation (2.5) was 
used for computing c. The results are reported in the following reduced 
variables: 

n r--- no 3, T ' =  k r l c ,  X r =  x /o ,  V ~ =  o27/e (3.12) 

At the critical point T ~= 1.4 for the theoretical free energy function we 
used. 

In Fig. 4 the density profiles of several liquid-like thin films are plotted 
for films at reduced temperature T r =  0.703. As was the case for the van 
der Waals fluid, thin films of the Lennard-Jones fluid are essentially thin 
phases at quite small half-widths. This is verified in Table II for tempera- 
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I 
n r 

3 4 5 6 

Densi ty  profiles of thin films of a 6 - 1 2  Lenna rd - Jones  fluid at  T r = 0.703. 

tures ranging from near the triple point up to within a few percent of the 
critical point. Comparing the results of Table II and theoretical profiles of 
l iquid-vapor interfaces of the 6-12 Lennard-Jones fluid, we conclude that 
for this fluid, too, a thin film behaves as a thin phase if its half-width is a 
couple of multiples of the width of the liquid-vapor interfacial zone. 

That  such thin films can behave essentially as phases has a bearing on 
Antonov's rule. (15) For many three-phase systems it has been observed that 
the interfacial tension between a pair of them, say phases 1 and 3, is equal 
to the sum of the interfacial tensions between phases 1 and 2 and phases 2 
and 3, i.e., 

"Y13 = YI2 + Y23 (3.13) 

An explanation of this relationship is that a thin film of phase 2 forms 
spontaneously between phases 1 and 3 when they are contacted, so that the 
observed tension is that of the two interfaces of the thin film. Since the film 
is not generally observed in the tension studies, this explanation of 
Antonov's rule can be valid only if the thin film of phase 2, though thick 
enough to behave as a bulk phase, is small compared to the resolution of 
visible light. For the model calculations reported here, bulk-like films would 
certainly be invisible except near the critical point. 

It has been discovered that ultralow tension between oil and water at 
low surfactant concentration occurs for certain surfactants only if a finely 
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Table II. Reduced Maximum Density n~), Bulk Density n~, Half-Width 
Dx~/2, Film Tension .~r, and Chemical Potential/,r for Liquid-Like Thin 
Films of a 6-12 Lennard-Jones Fluid of Classical Monatomic Particles 

(Having the Molecular Weight of Argon) 

n~ n~ AX(/2 ~[r ~tr 

T ~ = 0.703 
0.842 0.00202 o0 3.026 - 4.366 
0.799 0.00212 4.56 2.942 - 4.345 
0.772 0.00222 4.06 2.784 - 4.313 
0.671 0.00302 3.4 2.279 - 4.102 
0.606 0.00403 3.2 1.865 - 3.908 
0.474 0.00807 3.17 1.071 - 3.453 
0.402 0.0121 3.28 0.711 - 3.201 
0.352 0.0161 3.33 0.498 - 3.031 
0.313 0.0202 3.48 0.359 - 2.908 
0. ! 91 0.0403 4.27 0.0722 - 2.590 
0.0954 0.0706 9.10 0.00084 - 2.459 

T r=  1.029 
0.702 0.0314 ~ 1.322 - 3.781 
0.692 0.031 44 8.13 1.318 - 3:780 
0.699 0.0317 6.37 1.285 - 3.773 
0.592 0.0346 4.90 1.065 - 3.706 
0.449 0.471 4.43 0.546 - 3.477 
0.347 0.0628 4.64 0.247 - 3.297 
0.289 0.0754 5.02 0.125 - 3.203 
0.222 0.0942 6.04 0.0357 - 3.102 

T r =  1.374 
0.485 0.1634 ~ 0.124 - 3.4783 
0.473 0.1636 16.04 0.122 - 3.478 
0.447 0.165 12.21 0.109 - 3.475 
0.397 0.172 10.41 0.073 - 3.462 
0.357 0.180 10.32 0.043 - 3.449 
0.278 0.204 13.56 0.0052 - 3.425 
0.257 0.212 16.77 0.0016 - 3.422 

d i s p e r s e d  th i rd  p h a s e  is p re sen t .  T h e  s imp les t  h y p o t h e s i s  to e x p l a i n  this  

f i n d i n g  is t h a t  a thin ,  invis ib le  f i lm of  the  t h i rd  p h a s e  gives rise to the  

o b s e r v e d  u l t r a l ow  t e n s i o n  b e t w e e n  the  oil a n d  w a t e r  p h as e s .  

O u r  c a l c u l a t i o n s  also s u p p o r t  the  d u p l e x  f i lm h y p o t h e s i s  of  H a r -  

kins.(16) A c c o r d i n g  to  this  h y p o t h e s i s ,  for  f i lms of  m o l e c u l a r  sca le  t h i cknes s  

the  su r f ace  excess  H e l m h o l t z  f ree  ene rgy  of  a s o l i d - f i l m - g a s  i n t e r f a c e  is 

e q u a l  to  t he  s u m  of  t he  s o l i d - b u l k  l iqu id  su r f ace  excess  f ree  e n e r g y  a n d  the  

b u l k  l i q u i d - g a s  su r f ace  t ens ion .  G r a d i e n t  t h e o r y  p r o v i d e s  a p rec i se  w a y  of  

d e t e r m i n i n g  w h e n  a t h in  f i lm b e c o m e s  a d u p l e x  f i lm. 
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Dens i ty  and  transverse  and  n o r m a l  pressure profi les of  a thin fi lm of  a van  der W a a l s  
fluid at T *  = 0 . 2 2 3 .  

Another interesting property of a thin film is the pressure tensor. There 
are two components for a planar film: (1) the normal component PN, which 
is constant across the film and is equal to the bulk pressure [i.e., PN 
= P0(nB)] and (2) the transverse component PT. The tension of the film is 
the integral across the film of their difference, i.e., ~, = f~-~(PN -- Pr)dY �9 
According to gradient theory, PT is given by 

PT = ~Po(n) + 1PN ( 3 . 1 4 )  

In Fig. 5 the density profile and corresponding pressure profiles are plotted 
for a thin film of a van der Waals fluid. The film interface is under tension 
(Pr < IN) on the liquid-like side of the film interface and is under 
compression on the gas-like side of the interface. The transverse pressure is 
actually negative across part of the interface. In gradient theory the 
negative pressure comes from negative values of Po(n) that occur in the van 
der Waals loop between vapor and liquid densities. As illustrated in Fig. 6 
for a van der Waals fluid, negative pressures appear at quite high tempera- 
tures (in fact for T* < 1 /4  for the VDW equation: * T~ritical = 0.296). In the 
PVT diagrams of most textbooks the region of negative pressures is usually 
not discussed. For bulk fluid it does not seem to be very important. 
However, in inhomogeneous fluid the negative region plays an important 
role in the properties of the microstructure. At very low temperatures the 
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Fig. 6. PVT phase diagram of a van der Waals fluid. The liquid-vapor densities are 
indicated by the points connected with constant-pressure tie-lines. 

negative region of P r  accounts for most of the tension of an interface. 
Adjacent tensile and compressive zones of P r  give rise to bending mo- 
ments. In the case of the symmetric thin films studied here, the bending 
moments cancel. However, for a thin film between unlike phases the 
bending moments may determine the natural curving tendencies of the thin 
film. And in curved films, e.g., vesicles and liposomes, the bending mo- 
ments may affect stability. The role of the state of stress in fluid microstruc- 
ture deserves a great deal of attention in the future. 

In the colloid literature the state of a thin film is sometimes repre- 
sented by its disjoining pressure H, defined b y  ( 1 7 - 1 9 )  

17 = PN - PR (3.15) 

where PN is the normal pressure of the thin film and PR is the pressure of 
bulk phase of the film material at the same temperature and chemical 
potential as the film. We shall refer to this as the reference phase. Rusanov 
and Kuni (2~ have developed an asymptotic (valid for sufficiently thick 
films) theory of a planar film of width H bounded on its two faces by 
phases of uniform densities n~ and n 2. Under the assumption that the film 
molecules interact with each other and with the bounding phases via the 
6-12 Lennard-Jones pair potential, Rusanov and Kuni (RK) showed that 
the disjoining pressure and the difference between the center film density n o 
and the reference density n R vary as H - 3  for sufficiently thick films. In 
particular, they find for a one-component film 

II  = B H - 3  + O(H-4) (3.16) 
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and 

_ i 2 R - 2 n R A f f ) H  -3  O(H -4) (3.17) no nR = - g o ' r n R K T ( n l A f ,  + n2Af2 + 

where 

B = ~ v r ( n R n t A f ,  + n R n 2 A f 2 -  n ~ A f f -  n ,n2A12 ) (3.18) 

The Ay are Hamaker constants for the pair interactions among film and 
boundary phase molecules [A = 4ca 6 in the notation of Eq. (3.1 I)] and Kr R 
is the isothermal compressibility of the reference phase. 

For the unsupported thin films of the 6-12 Lennard-Jones fluid 
considered in the present work, Af l  = Af2 = Af f  = A iz = 4eo6 and the densi- 
ties n! and n 2 of the uniform bounding phases are equal to n s ,  so that 

I I  = - 2~f_o6(l ' l  R - n B ) 2 H  --3 (3.19) 

and 

n o - n R = - 32r  (n  R - n ~ ) H  -3 (3.20) 

Since the unsupported thin films of the present work approach a 
uniform density n B asymptotically, there is some difficulty in identifying the 
film width H. For convenience we shall identify H with twice the half- 
width defined by Eq. (3.10). For films wide compared to the width of the 
vapor-liquid interfacial zone, this assignment of H is reasonable--it is for 
such wide films that the RK asymptotic theory is applicable. For films 
supported between two solid phases, one can vary H while holding fixed 
the temperature and chemical potential of the film phase. Equations (3.16) 
and (3.17) can therefore be tested at constant n R and Kr R. For our 
unsupported film, we must vary the chemical potential to vary the width of 
the film. Thus, nR, Kr R, and n B vary with film width. However, for films 
wide compared to the width of the liquid-vapor interfacial zone, these 
quantities vary slowly, so that one may still expect the RK results to hold. 

We have computed I I  and n o - N R for liquid-like films of the 6-12 
Lennard-Jones fluid at T~=0.875 and 1.117. The Weeks-Chandler-  
Andersen theory was used for the Helmholtz free energy and pair correla- 
tion function of a homogeneous fluid. The properties of a thin film are 
fixed by setting T and /~ =/zo(ns). The density of the reference phase is 
given by kt =/z0(nR). There are actually three densities satisfying/~ =/~0(n). 
These are n B, nR, and n,, n, being intermediate between n B and n R and 
corresponding to unstable homogeneous fluid. The reference pressure is 
computed from PR = P0(nR); and K~ = [(l/n)On/Oeo(n)],,=,,,. 

Results of gradient theory for n~ - n~ are presented in Figs. 7 and 8, 
where (n~ - nor) I/3 is plotted versu,s l / A x e ~  2. As expected, for sufficiently 
wide films ( x l /21> 50 for T~=0.875 and Ax l /2>~  10o for T r =  1.117), 
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Fig. 7. Cube root of the difference between the gradient-theoretical film center density and 
reference bulk fluid density versus the film half-width for a 6-12 Lennard-Jones fluid. The 
straight line coincides with the RK theory. 
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Fig. 8. Cube root of the difference between the gradient-theoretical film center density and 
reference bulk fluid density versus the film half-width for a 6-12 Lennard-Jones fluid. The 
straight line coincides with the RK theory. 

(n,~ - nor) 1/3 is a l inear funct ion  of l / A x e ~  z. At T r = 0.875, the width of the 
l i qu id -vapor  interface is about  40; at T r =  1.117 it is about  60. Thus, the 
onset of the asymptotic density behavior  obtains  for a film whose half- 
width is a little greater than the width of the corresponding l iqu id -vapor  
interface at the same temperature.  For  smaller half-widths the difference 
n~ -- n~ increases with increasing 1 /Ax  [/2 faster than  the third power. This 
is because a smaller film results from increasing /~ and  a consequent  
increase in n~KrR(nR -- nB). 
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Fig. 9. Gradient-theoretical disjoining pressure 
versus film half-width. 
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The logarithm of the reduced disjoining pressure (II r=  q'/'O3/~) pre- 
dicted by gradient theory is plotted versus the logarithm of 1/Ax (/2 in Figs. 
9 and 10. The curve is linear in the region in which n ~ -  n~ had the 
expected inverse-cube dependence on film width. However, the slope is 
about 5 instead of the expected value of 3. This discrepancy between 
gradient theory and the RK theory could arise from the fact that the 
boundary phases are only asymptotically uniform, with boundary zones 
that change in density profile with changing film thickness. Since pressure 
is a much more sensitive function of chemical potential than density, the 
disjoining pressure can reflect the changes of the boundary region more 
strongly than does the density. If this is the origin of the discrepancy, then 
our results imply that the RK asymptotic theory will be valid only if the 
boundary phases are solids or fluids totally immiscible with the film 
material. We cannot of course rule out the possibility that the discrepancy 

Fig. 10. Gradient-theoretical disjoining pressure 
versus film half-width. 
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arises from the approximate nature of the Weeks-Chandler-Andersen 
theory used for the free energy and pair correlation function. However, 
whereas their theory should be more accurate at T r =  0.875 than at 
T r =  1.117 (because the thick films and reference fluid are at higher 
densities), the discrepancy in slope is larger at T r = 1.117. In the future, we 
plan to use molecular dynamical data to perform the same calculations to 
try to resolve the issue. 

4. LAYERED S T R U C T U R E S  

One-dimensional periodic structures, i.e., layered structures, are also 
predicted by gradient theory. For a one-component fluid the boundary 
conditions determining a layered structure are 

dn x ~  = dn x,+X ~xx = 0 or co(G) = r (4.1) 

where n ( G  ) = G, the density minimum; n (G  + X) = n b, the density maxi- 
mum; and X is the half-wavelength of the structure. Certain kinds of liquid 
crystals are examples of one-dimensional periodic fluid microstructures 
occurring in nature. 

For a given temperature T and chemical potential F, a periodic 
structure will be defined for any density pair G, nb for which c0(G ) - co(rib) 
and Aco(n) = ~0(n) - co(G) > 0 for G < n < G, the latter condition on c0(n) 
being forced by Eq. (2.13). Oeometrically, Aco(n) is the vertical height 
between the curvef0(n ) and the straight line which cuts the curve f0(n ) at n o 
and which is parallel to the chemical potential F. The straight line, which 
has the equation n/z + co(G), is shown in Fig. 11 for three different layered 

,u./w t n a ,/x i 

~ . . ~ . . ~  fo (n) 
~ _ ~ / x +  w(na,/z) 

I 
I 

na n'b nb n 

Fig. 11. 

~('i'H') - ~~ '/x) .. 

Free energy construction of the characteristic densities of layered structures. 
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Free energy construction of the characteristic densities of layered strnctures. 

structures. These structures have the same temperature and chemical poten- 
tial, but different wavelengths X and density pairs %, n b. From Fig. 11, it 
follows that for a given T and/~, layered structures are obtained for any 
straight line parallel to ng~, provided the minimum density ties between the 
value n~ at which the line is tangent to fo(n) and the value n~' above which 
the line lies above the dome of f0(n ). The layered structure corresponding to 
the density pair n a, n' b in Fig. 11 is also a thin film. A thin film then is a 
degenerate case (one of infinite wavelength) of a layered structure, as also is 
the liquid-vapor interface in the special case that the chemical potential 
equals that of coexisting liquid and vapor phases. In Fig. 12, we illustrate 
Ao~(n) for two layered structures at the same temperature and having the 
same minimum density n o but different chemical potentials. Their maxi- 
mum densities have to be different also. 

The quantities characterizing a layered structure are T, #, n~, %, and X. 
Here, T must lie below the critical point to satisfy Eq. (4.1) with 2xw(n) > 0 
for n a < n < nb. To uniquely determine a layered structure, three of the five 
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Fig. 13. Dens i ty  profiles of layered s t ructures  of a van  der  W a a l s  fluid a t  T* = 0.170. Curve  

1 cor responds  to the condi t ions  na* = 0.030 and  / z * =  -0 .732 ,  curve 2 to n* = 0.100 and  

#* = - 0 . 7 3 2 ,  and  curve 3 to n* = 01200 and  ~t* = - 0 . 6 5 0 .  

quantities T,/z, na, nb, and 2, must be set. Thus, for a layered structure in a 
one-component fluid, there are three degrees of freedom. 

In reduced coordinates the profile equation for a layered structure in a 
van der Waals fluid is 

x *  - * = ~ (n*(x*) dn* (4.2) Xa J.: 

The half-wavelength h* and tension are given by 

X* = 1_~ ( n~ dn* (4.3) 
J.: - 

and 

"~*= 2 , ~ [ ~ o * ( n * ) - - o a * ( n * ) ] l / 2 d n  * (4.4) 

The tension and wavelengths are given in Table III for a few layered 
structures of a van der Waals fluid at T * =  0.170. Three corresponding 
density profiles are shown in Fig. 13. The trends illustrated by Table III are 
that tension increases with decreasing chemical potential if n a is fixed and 
that tension decreases with increasing n a (or decreasing rib) at constant 
chemical potential. 

Properties of a sequence of layered structures corresponding to the 
same chemical potential are given in Fig. 14 and Table IV for the 6 -1 2  
Lennard-Jones fluid. The structures are quite similar to those of the van der 
Waals fluid. As expected, A t =  ~ in the thin-film limit and ,{~= 0 in the 

r limit n~ = n b . 
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Table III. Reduced Minimum and Maximum Densities n.* and 
n~, Wavelength I*, Tension g* and Chemical Potential m* of a 

van der Waals Fluid at T* = 0.170 

n* n~' g* X* ~,* 

0.0300 0.7599 - 0.7317 4.75 0.298 
o. 1000 0.6650 - 0.7317 3.75 0.207 
0.3000 0.4437 - 0.7317 2.75 0.015 
0.0300 0.4658 - 0.6500 4.95 o. 113 
0.1000 0.4319 - 0.6500 3.10 0.074 
0.200 0.3466 - 0.6500 3.10 0.015 

T h e r e  is an  in te res t ing  fea tu re  of  the  w a v e l e n g t h  X of  a l aye r ed  

s t ructure .  F o r  a g iven  v a l u e  of /~ ,  as n a a n d  n b a p p r o a c h  e a c h  o t h e r  at  the  

p o i n t  n B w h e r e / z  = (Ofo/O,,)(ns) [and  (O2fo/On2)(ns) < 0], the t ens ion  of  the  

s t ruc tu re  t ends  to zero,  whe rea s  X a p p r o a c h e s  a f in i te  v a l u e  XB- T o  see this 

p r o p e r t y  ana ly t ica l ly ,  c o n s i d e r  the  express ion  

x _  x = • r d,, 
J',o [ t o (n )  - to(na) ] ' /2  (4.5)  

F o r  n ~ a n d  n b suf f ic ien t ly  c lose to n a,  the  t e rms  c(n), to(n), a n d  to(no) can  be  

e x p a n d e d  a b o u t  n~. W i t h  the  c o n d i t i o n  [Oto(n)/On]l,,,, = 0,  t o  lowes t  o r d e r  

I I I I I I 
-6 -5 -4 -5 -2 -I 0 

.8 

.7 

J I J ~ I [ 
I 2 3 4 5 6 

Fig. 14. 
X r ~  

Density profiles of layered structures of a 6-12 Lennard-Jones fluid at T r =  0.703 
and/z r = -4.366. 
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Table IV. Reduced Minimum and Maximum Densities n,~" and nt~, 
Wavelength I r (_= I /s ) ,  and Tension gr of Layered Structures of a 6 -12  

Lennard-Jones Fluid at Fixed Temperature (T" - 0.703) and 
Chemical Potential (m" = - 4 . 3 6 6 )  

nar n [  )kr y r 

0.00205 0.842 m 3.0269 
0.00222 0.8416 13.75 3.026 
0.00302 0.839 11.53 3.025 
0.00404 0.835 10.63 3.021 
0.00807 0.823 9.29 2.992 
0.0202 0.796 8.06 2.864 
0.0404 0.761 7.31 2.608 
0.0807 0.704 6.65 2.079 
0.202 0.565 5.98 0.768 
0.303 0.460 5.82 0.0148 
0.365 0.397 5.792 0.0063 
0.375 0.3874 5.7906 0.0009 
0.378 0.3844 5.7909 0.0002 
0.381 0.381 5.7905 0 

in  (n a - t/b) a n d  (n  - nB), Eq. (4.5) b e co me s  

1 
x - x ~  = c ( n ~ )  I d,, ~.2("~) ~.o [ ( ._ .o)2_( ._ . . )21 , /~  

(4.6) 

The  so lu t ion  to this e q u a t i o n  is 

X - -  X a 

or, inver ted ,  

I l J2E(n x n )i 1 3~f~ (nn )  s i n - t  . . . . .  + 7r 
c ( n s )  3n2 ne - n ,  -2 

(4.7) 

n x nB {Il  lJ2 ) 
- s in (nB) (x  - xa) - ~r 

ne - n~ c(n~) ~n2 
(4.8) 

The  va lue  of )t is d e t e r m i n e d  by  set t ing n ( x )  = n b o n  the  rhs of Eq. (4.7). In  
the  l imi t  tha t  n a ~ n B- a n d  n b ~ n B +, Eq. (4.7) yields  for X~ the va lue  

c ( n , )  On 2 i4"9) 
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The tension of the film corresponding to Eq. (4.7) is 

Y ~_~B(nB na)2{s in - l (nb - -nB)  ~7 
n B -- n a 2 

- -  - - -  ( 4 . 1 0 )  
+ 2 n B - -  gl a I t  B - -  I I  a 

a result showing that y ~ 0 faster than (n B - n~) 2 as n a and n b approach n B. 
Even though layered structures of a one-component fluid are not 

thermodynamically stable, the small-amplitude, low-excess-free-energy (i.e., 
low-tension) structures described by Eqs. (4.8) can be present as thermal 
fluctuations or as transients in a freezing fluid. In fact, in the theory of the 
spinodal decomposition of a rapidly cooled homogeneous phase, Cahn (20 
found that microstructures of separating phases of characteristic length )~8 
form preferentially in the initial stages of cooling. From the theory given 
here, we see that this occurs because the low-excess-free-energy structures 
1lave characteristic lengths clustered around )~a. 

5. C O N C L U D I N G  REMARKS 

We have outlined the general fluid gradient theory of microstructures 
for multicomponent systems. Equilibrium structures are determined by the 
extremal equations of F, Eq. (2.11) or (2.19) for the present theory. These 
structures represent stable equilibrium if the second variation of F is 
positive for mass-conserving fluctuations, i.e., if 

f eli (r) nB(r, ) v (OvB(e)a3ra3r'> 0 (5.1) 

for arbitrary density fluctuations v 1 . . . . .  %, not all zero and such that 
f vd3r=O;  a = 1 . . . . .  ~,. The symbol 6 ( ) / 6 n ( r )  denotes a functional 
derivative with respect to n(r). Although we do not present the analysis 
here, we have shown that planar thin films and layered structures of 
one-component fluids are not thermodynamically stable. Nevertheless, 
since the gradient theory of stable microstructures of multicomponent 
fluids will be similar in qualitative and mathematical detail to that of 
one-component fluid microstructures, we feel the results given in the 
preceding sections provide a useful step in the development of the general 
theory of fluid microstructures. In a separate work (22~ we have addressed 
the question of the origins and nature of stability of fluid microstructures. 
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